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FOREWORD 

This work was carried out in response to the results of the systems analysis conducted 
in connection with the preparation of the QMDO for Functional Field Shelters. This 
analysis identified the pressurized rib concept as being the most promising structural 
alternative with regard to meeting the Army requirement for lightweight highly mobile 
tentage. A project was initiated in FY 71 to investigate the feasibility of the pressurized 
rib concept and to develop the design data on pressure stabilized structural elements 
necessary for Army tentage applications. Support for this project has been provided 
through the In-House Laboratory Independent Research program. 

This report presents a mathematical analysis of the deformation behavior of these 
structural elements under load and the development of the equations which will be used 
in the design of structures. Subsequent reports will present experimental studies designed 
to test this theoretical analysis and will describe extensions of this study to the performance 
of arches. 
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INTRODUCTION 

The use of pressure stabilized structures for Army field shelters has been the subject 
of considerable attention over the past decade with emphasis on the single-wall and 
double-wall type shelters, as indicated by references 1 and 2. A concept that has received 
little attention is that of constructing tent frames with pressure stabilized beams and arches, 
in view of this, an investigation of the behavior of these structural elements under load 
was initiated and this report presents the portion of this work relating to the deformation 
behavior of the pressurized beams. Specifically, a theoretical study of the problem is 
presented with the objective being the establishment of a set of equations to be used 
in the design of tent frame strictures using pressurized beams. 

The structures under consideration can be described as cylindrical membranes, and 
considerable theoretical work has been done on such structures. The linear wcrx in this 
area is a statically determinate problem with the associated limitations regarding the types 
of boundary condition that can be applied. These limitations are too restrictive for the 
problem under consideration and the removal of these restrictions requires the use of 
a nonlinear membrane theory. Since the objective of this work was development of a 
linear theory, the classical membrane approach was rejected. Most other work regarding 
the behavior of this type of structure can roughly be divided into two categories. The 
first of these included work which examined special cases such as beams subjected to 
uniform moments or statically determinate loadings in which the stresses could be 
calculated without regard to deformation. In general, the work in this first category, 
ag. references 3 and 4, does not constitute attempts to develop a generally applicable 
theory to be used for the design of pressure stabilized beams. The second category, e.g. 
references 5, 6 and 7, deals with the wrinkling behavior of pressurized cylinders which 
relates to the failure criteria for this type of structure. This is an extremely complicated 
problem and these papers therefore deal with simplified loading problems, typically uniform 
moments. Thus these results, although useful in developing failure criteria, are not 
applicable to general loadings and boundary conditions. A theory for the behavior of 
pressure stabilized beams is presented in reference 8; however, this theory was not used 
in the present work because it was developed by writing expressions for the 3 components 
of energy independently and summing them to obtain the total energy. It was felt that 
a more consistent derivation would result from application of the ideas of superposition 
of small displacements on large ones, that is, those due to pressurization. In addition, 
the results in reference 8 deal principally with the buckling of columns. 

The present report includes a derivation of the governing equations and boundary 
conditions for the lateral deformation of pressure stabilized beams and development of 
Green's Function and uniform load solutions for the simply supported and clamped beam 
cases, in addition, parametric studies are presented which illustrate the linear behavior 
of pressure stabilized beams under load. 
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ANALYSIS 

In this section a derivation of a set of governing equations for lateral deformation 
of pressure stabilized beams and their solution will be carried out. The derivation will 
utilize the principle of minimum potential energy and begins by establishing an energy 
principle for deformation about the pressurized state. A simplified displacement 
approximation is then used to reduce the problem from two dimensions to one dimension. 
This displacement approximation requires that the cross section remain underformed and 
includes deformation due to transverse shear. The governing equations based on this 
approximation are then obtained using variational principles. The fundamental homogenous 
solution to these equations is obtained in preparation for development of the Green's 
function solutions for the cases of simply-supported ends and clamped ends. In addition 
to these Green's function solutions, the solutions for the uniformly loaded beams are 
obtained directly by finding the appropriate particular solution of the governing equations. 

Derivation of the Governing Equations 

Fundamental Principles: 

The derivation is based on the principle of minimum potential energy which for the 
membrane state of stress can be written: 

«/A -IfVnN,,  + ejjNj, + 2e,jN,2 - 2pv3] dA = 0 (1) 

The subscripts denote the coordinated directions x, and x2 as shown in Figure 1. In 
equation (1) the 6jj and Njj are respectively the surface strains and the inplane stress 
resultants; p is the normal load distribution and v3 is the normal displacement. For the 
displacements illustrated in Figure 1 the strains are defined as 

vM + 2. (v3(1)' 

1 
«22   ■   —   (v2 a   + V3>  +  -__ 

r       ' 2? 
(-vv + v2)

J 

e12   = — fv2fI  +  1 v, j  +1  (-v3 ,)(-v3 2  + v2)] 
2 r      '       r 

(2a) 

(2b) 

(2c) 

where the commas denote differentiation with respect to the coordinate designated by 
the subscript following the comma. The stres. resultants are given in terms of the strains 
by the stress-strain relation as: 



FIGURE 1.       COORDINATES AND DISPLACEMENT 
COMPONENTS. 
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Nu « Cii 6n + cu e»; 

Naj - C,j e,,   + C2J Cj; 

N,a = 2C33    €,, 

(3a) 

(3b) 

(3c) 

Energy Principle for Deformation aboiu Pressurized Stute: 

To derive the energy principle for deformation about the pressurized state it is assumed 
that the displacement components Vj can be written as a superposition of displacement 
components, Wj, of the pressurized state and ujr describing the deformation about the 
pressurized state due to applied loads as 

Vj       =  Wj      +   Uj 

Substituting equation (4) into the strain displacement relation (2) yields 

(4) 

en  =£n   +fii   + e 11 

€i1   -   CJJ    +  6j2    +  C2; 

*12    =   €12    +   el2    +   c12 

(5a) 

(5b) 

(5c) 

where 

o 
w,#1    +   1   (w,,,)2 (6a) 

fc'ii 

o 
£j2 

■ "1,1        +     w3,l   "3,1 

=   1   (U3,,)2 

2 

■ J_     (W2 2     +  W3)   + -L.    (-W32    +  W2)
2 

r 2r2 

ejj   =1       (U2 2     +   U3)    + _1_    (-W32   +  W2)(-U3(2   +  U2) 
r r 

(6b) 

(6c) 

(6d) 

(6e) 



fja 

o 
C|2 

-1-      (-U32      +      u2)
2 

2r2 

= .1  [w2 ,   + 1 w, 2     + i <"wv><-w3.2   + w2)] 

<M2    =   y       [U2(1     +   -   Ui,2       +   -   <-W3#i)(-U3#2      +   U2) 

+  _L   (-U31}(-W3 2      +  Wj)] 

Elj   =-        [-U3/i(-U3(2   +   U2)] 

By the use of equations (5) in the stress-strain law (3) obtain 

N,, = N,°, + N,', + N,", 

o , ,, 
N22 = Na2 + N22 + Nj2 

N,2 - N,°a + N',2 + N.'j 

where 

Nu - On eM + C,2 €22 

t                                t * 

N| 1  ■ C|i   C\ 1 +   C12 622 

tt                                tt tt 

N| I   = C, 1   Cj 1 +   C12 f22 

000 

N22  ■ C|2   Ci 1 +   C22 C2 2 

'                                                    t $ 

N22   = Cj2   €1 1 +   C22 €22 

N22 = C12 ei'i + C22 ei'2 

(6f) 

(6g) 

(6h) 

(61) 

(7a) 

(7b) 

(7c) 

(8a) 

(8b) 

(8c) 

(8d) 

(8e) 

(8f) 
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N,2 = 2C33 e,j 

N,'2 = 2C33 e,'2 

N,2 = 2C33   e,j 

(8g) 

(8h) 

(8i) 

Substitution of equations (5) and (7) into the energy principle and retaining terms up 

to those quadratic in the displacement components u; yields 

5/A   -*  [(€,",    NM + e,°a  N22 + 2e,°2     N1°a-2pw3)  + 2 (en     N,°, 

+  e22  Nj°2 + 2e,'2    N,2 - pu3)    + (e/i     N,', + e22  N2'2 + 2e12    N,'2 

+ 2c,",     N,°, + 2e22    Nj°2 + 4eu    N°2 - 2Fu3)J  dA = 0 {9) 

In establishing this relationship the energy due +o the applied forces F which do work 

only through the displacement component U3 has been added and the following identities 

which can be proven through the stress-strain law have been used: 

e,,   N,, + e22  N23 * e,,   N,, + e22  N22 

e,j   N,2 = e,2   N,2 

«ii   N,, + e22   N22 * e,,   N,, + e22   N22 

O it it O 

*u  NI2 ■ e,2  NI2 

(10) 

To yield the governing equations for deformation a oout the pressurized state, which 

is described by the displacement components Uj, the variation in equation (9) must be 

interpreted so as to be carried out with respect to the components u;. Since the expression 

inclosed in the first set of brackets in equation (9) is independent of the components 

uj, its variation must vanish. Carrying out the variation of the second set of brackets 

and performing the required integration by parts, one finds that the coefficient of the 

variational displacements, 5u-t, are the equilibrium equations governing the pressurized state 

which must vanish if the stress resultants Nu, N23 and N,2 represent an equilibrium 

6 
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State.   Taking this into account, the following is the energy principle for deformation 

about the pressurized state: 

6/A 1 (e,X,    + e22  N,a + 2e,',     N,'a + 2e,",    N,°, + 2e22    N22 

+ 4«i3     Nia - 2Fu3) dA   = 0 (11) 

This is the energy principle to be used to derive the equations governing the deformation 

about the pressurized state. 

Simplified Displacement Approximation: 

The problem as presently stated in equations (11), (6) and (8) is a problem in two 

independent coordinates and will yield partial differential equations. The objective here 

if to simplify the mathematical form by introducing a displacement approximation which 

specified the form of the displacement components with respect to the circumferential 

coordinate. This displacement approximation describes the deformation in terms of rigid 

body motions of the cross section or stated alternatively, constrains the cross section to 

retain its shape during deformation. This approximation is the one used in beam theory; 

here, however, transverse shear deformation is included. This approximation can be stated 

mathematically by expressing the displacement components u; in terms of the axial 

displacement of the cross section, Ü, the transverse displacement of the cross section, 

W, and the rotation of the cross section about an axis normal to the plane of Ü and 

7J, <f>, as: 

Ui    = C - 4>a   Sin(xa) 

uj    =WCos(Xi) 

(12a) 

(12b) 

u3    = WSin(xa) (12c) 

These cross section displacements which are functions of x, only are illustrated in Figure 1. 

These displacement approximations can be used to formulate one-dimensional strain 

measures, stress resultants and a one-dimensional energy principle. The one-dimensional 

strain measures are obtained by substituting equations (12) into equations (6;. This yields 

the following non-vanishing strain component»: 

.d-d- 



fill 
a ei- - Ki  a Sin( xa) 

M 

as 1 
2 

(ft'}2 Sir (x2) 

«la a 8u Coslxj) 

(13a) 

(13b) 

(13c) 

In carrying out this formulation the displacement components due to pressurization w3 

and Wj have been assumed to vanish and take on a constant value, respectively. The 

one-dimensional strain measures ei, K1( and ei2 are defined as: 

lw (14a) 

K,      -J.*' (14b) 

eia  * 1 (1   W- <t>) 
2  p 

(14c) 

In writing these expressions the axial coordinate and  the displacements have been 

non-dimensionalized as follows: 

Xl I* 

W    « aW 

D     « aU 

(15a) 

(15b) 

(15c) 

and the prime denotes differentiation with respect to the non-dimensional variable, £, and 

a and I are respectively the beam cross sectional radius and length measure. 

The one-dimension»! energy principle is established by substitution of equations (13) 

into equation (11), taking account of the vanishing strains this yields: 

8/t/o     — [eirii    -K,ni, aSin(x2)      + 2eianJ» Cos(xa) 

+  JL(W')2n Sin2(xa)     -2   I   F W Sin(xa)l aldxad£ - 0     (16) 

.a^. 



In this expression the stress resultants have been non-dimensionalized by division by a 

reference value of the elastic modulus C,, = C,,. The non-dimensional force parameter 

is defined by F = Fl/C,, This energy principle is reduced to a one-dimensional principle 

by definition u* the o'.e-dimensional stress resultants and forces as follows: 

T = U      n,, adx, 

M- /</      n,, a2Sin(x2)dx2 

2 7)* 

Q ■ /o        nI2 aCos(x2)dx2 

1       2^ f FSin(x2)dx 2/0*2 

(17a) 

(17b) 

(17c) 

(17d) 

The remaining term appearing in the energy, that containing the stress due to pressurization, 

n, can be integrated with respect to x2 since both n and W are functions of X| only. 

The one-dimensional stress-strain law is obtained from equations (17) by substitution of 

the stressstrain law (8), properly non-dimensionalized, and the strain ^'»placement 

relations (13) and carrying out the required integration to yield 

T * 2rrdae, 

M* -rrda3 KI 

(18a) 

(18b) 

Q * 2ffcae, 2 (18c) 

The one-dimensional energy principle is put in final form by rewriting equation (16) using 

tne definitions given in (17): 

1 Tra 6 f  -    [e,T - K,M + 2eI20 +   _      (W')2n 

- 2ir   L  fW]  ld$ = 0 
9 

(19; 

It should be remembered that the stress resultant due to pressurization, n, is a known 

quantity in this equation. 

9 
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Governing Differential Equations: 

With the preliminaries as developed above, it is possible to derive the equations 
governing the cross section displacements U, W and <t>- This is accomplished by writing 

the energy principle (19) in terms of these displacements by using equations (18) and 
(14) and carrying out the variation, the integration by parts where required and application 
of the fundamental lemma of the calculus of variation to yield the differential equations. 
The energy principle in terms of displacements is given as: 

«/* 
jral   r 2d [~ (U')2 + —  (0')2 + c(-l W-0)2 + ~ (W')J 

-2-1 fWJ df = 0 (20) 
P 

carrying out the variation 

/t    rrai (4?  U'fiU' + ~ 0'6 0*  + -—W'5W'-£W50 -   £   0«W 
K P P2 P2 P P 

+ c050 + — W6W - 1   f6W)   d£ = 0 
P2 P 

(21) 

Carrying out the required integration by parts with the interval of integration being ($i, 

ta 
/>      ml [(- -?£   U") 5U + (-^   0" -1   W + c0) 80 

+ (- 1  (c + n)W" +£  0' - 1 f) SW] d* 
P2 P P 

(22) 

+ [12  (c + n)W —c 0J6W/&    + [W U'] 5U/*a + rf 0'] - '*' S ° 
€■ *i      P fi 

According to the fundamental lemma of the calculus of variations satisfaction of this 
equation requires that the coefficients of fU, (W and (0 vanish independently yielding 

the governing differential equations 

10 
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U" = 0 

d0" + cpW - cp20 = 0 

(c + n)W" - cp0' + pf = 0 

and boundary conditions requiring specification of 

U' or U 

(23) 

(24) 

(25) 

(26a) 

0   or 0 

1     (c + n)W - i 0 or W 
P2 P 

(26b) 

(26c) 

at $*£,  and {■=&• 

It is to be noted that in these euqations the axial deformation specified by the 

dependent variable U is uncoupled from the tn. .averse deformation specified by the 

dependent variables W and 0. Thus when axial deformation is of no interest, as is the 

present case, it may be ignored. 

Solution of the Governing Equations 

The purpose of this section is the formulation of the solutions to the equation 

obtained in the previous section. This work will be limited to the transverse or bending 

deformation parameters, W and 0. The fundamental homogenous solutions will be obtained 

first and this will be utilized to develop Green's function solutions for the cases of simply 

supported ends and clamped ends. 

Fundamental Homogenous Solution: 

I n this section the homogenou: solution to the equations governing W and 0 are found. 

These equations, (24) and (25), are second order coupled ordinary differential equations 

with constant coefficients so the solution is of the form: 

11 

v 
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W - Aew* 

0 « Be"* 

(27a) 

(27b) 

Substitution of these expressions into the homogenous differential equations leads to the 

following matrix equations for the constants A and B and the characteristic roots 

(c + n)w2 -pew 

epej d«2 —cp 

(28) 

For these equations to have a nontrivial solution the determinate must vanish from which 

the characteristic roots are found to be u, = 0,"j = 0, w3 = X, and w3 = -X. For 

each of these roots a relation exists between A and B, as follows: 

p - A2/p 

Bj - 0 

B3 = 0A4 

B4 - 0A3 

0 = cpX/(cp2 - X2d) 

X «    Wcp2n/d(c + n) 

Thus the homogenous solution is 

W « A,  +Aj$ + A3 Cosh(X^) + A4 Sinh(X$) 

<t> = 2-   A, + A40 Cosh(X$) + A30 Sinh(X$) 

(29) 

(30a) 

(30b) 

12 
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Green's Function: 

The solution obtained in the previous section is not complete in that neither the 
loading condition nor the boundary conditions have been specified. In this section two 
sets of boundary conditions will be considered in conjunction with a concentrated loading. 
This will be handled in the form of a Green's function because the results are applicable 
not only to the concentrated load but also to the general loading situation by means 
of direct integration. To carry out the solution, consider a beam of length 21 with 
the origin of coordinates located at the center of the beam and concentrated load, g, 
applied at $ = T?. In a physical situation this load would be applied as a distributed 
circumferential line load G(x2) and this is related to the concentrated load, g, by: 

g =     J_ /0      G(x2) Sin(x2)dx2 (31) 
irCi i 

The Green's function is found (reference 9) by obtaining two sets of functions of the 
form of equations (30), one of which (Wi, <t>t), satisfies the boundary conditions at £ = -1 
and the other, (W2, <j>2). satisfies the boundary conditions at £ = 1. The remaining 
constants of integration are determined by satisfaction of three continuity conditions and 
a jump condition to account for the concentrated load 8t $ = T?.  These conditions are: 

W, fa) = Wj (T?) (32a) 

0i to)   - <t>2 (T?) (32b) 

<t>M   = 02(T?) (32C) 

[(c + n)W,(ij) - cpMu)] - Mc + n)W2(?,) - cp02(tj)] = pg ,                 (32d) 

Simply Supported Boundary Conditions: 

The first case of end restraint to be considered is that of a beam simply supported 
on both ends.   Physically, simply supported means that the transverse displacement and 
the moment vanish at the end of the beam. These conditions are expressed mathematically 
as 

13 



W,(-1) - 0 

0,1-1) a 0 

Wad)    = 0 

02(1) * 0 

(33a) 

(33b) 

(33c) 

(33d) 

Application of these four conditions in conjunction with the four conditions at the location 
of the concentrated load, equations (32), is sufficient to determine the eight constants 
appearing in W1( $,, W2 and 02, thus completing the solution of this case which is as 

follows: 

for -1 < $ < v 

W « i-  [p(1-r?)(H£) + T,  [Sinh(X$) + Tanh(X) Cosh(X$)]] 
2n 

(34) 

0 =  i-   Id-»?) + 0r,  (Cosh(Xf)f Tanh(X) Sinh(X$)]J 
*n 

r     m Sinh(Xt?) - Tanh(X) Cosh(Xt?) 

0Tanh(X) 

(35) 

for v < I < 1 

W «JL     [p(1+T?)(1-$) + r2  (Sinh(X$) - Tanh(X) Cosh(X|)]] 
2n 

0=1      [-(t-T?) f ßr2  [Cosh(Xf) - Tanh(X) Sinh(X$)]] 
2n 

SinhjXg) + Tanh(X) COSMXT?) 

0Tanh(X) 

(36) 

(37) 

In writing these expressions the subscripts on W and 0 have been dropped and the range 
of £ over which the solution is valid has been specified. This solution has the symmetry 
property required of a Green's function, namely W(£,i7) ■ W(«7,()> 
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Clamped Boundary Condition: 

In this section the Green's function for a beam with clamped or fixed restraints 

on both ends will be determined. Physically, the clamped end means that both the 

transverse displacement and the slope vanish at the end of the beam. This is expressed 

mathematically as 

W,(-1) « 0 (38a) 

0,(-l) - 0 (38b) 

W2(1) = 0 (38c) 

<t>2 (1) - 0 (38d) 

As with the simple supported case, application of these conditions in conjunction with 

those specifying the condition at the position of the concentrated load allows all unknown 

constants of integration to be determined giving the solution as 

for -1 > { > T? 

W -£_   [a3[p0(1+$) Sinh(X) - Cosh(X) + Cosh(X{)l 
2n0 (39a) 

+ a4[-p0(1+$) Cosh(X) + Sinh(X) + Sinh(Xf)]] 

0 -i_   [a3|Sin(\) + Sinh(X{)l + a4    (-Cosh(X) + Cosh(X{)] (39b) 
2n 

for 7? > { > 1 

W =!_  [b3[p0(1-$) Sinh(X) -Cosh(X) + Cosh(X()] 
2n0 

+ b4[p/?(1-$) Cosh(X) -Sinh(X) + Sinh(Xfc)]] (40a) 

0=JL   [b3(-Sinh(X) + Sinh(X{)]  + b4 (-Cosh(X) + Cosh(X$)] ] (40b) 
in 
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where 

83 - [1 + Sinh(X) Sinh(Xr?) - Cosh(X) Cosh(X»j)]/Sinh(X) (41a) 

a4 - [-pßv - Pß Sinh(X) Sinh(Xrj) + ßß Cosh(X) CoshfXr?) 
(41b) 

+ Cosh(X) SinhfXr?) - Sinh(X) Cosh(XTj)J/[Sinh(X) -pß Cosh(X)) 

b3 = [1- Sinh(X) SinhfXr?) - COSMA,  Cosh(T?X)]/Sinh(X) (42a) 

b4 = [-pßr\ - pß Sinh(X) SinhtXr?) - p0Cosh(X) Cosh(Xrj) 
(42b) 

+ Cosh(X) Sinh(Xj?) + Si.ih(X) Cosh(Xn))] /[Sinh(X) - pß Cosh(X)) 

Although it cannot be seen by inspection, this solution also has the symmetry property 
associated with a Green's function. 

Uniform Load Solution: 

A solution that is frequently useful and relatively easy to obtain directly as opposed 
to integration of the Green's function is that for the uniformly loaded beam. As with 
the Green's function, solutions will consider a beam of length 21 with the origin of 
coordinates at the center of the beam as depicted in Figure V The solution desired 
is that for equations (24) and (25) with the loading parameter, f, taken as a constant. 
This solution can be written as the sum of a homogenous solution and a particular solution. 
The homogenous solution is given by equations (30) so only the particular solution remains 
to be determined and this is taken in the form: 

W = D,f2 (43a) 

0 = Da* (43b) 

Substitution of these into the differential equations (24) and (25) and solution for the 
constants D, and D2 yields 

D, - - Jl (44a) 
Tn 
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D, = - _ (44b) 
n 

and the full solution is then: 

W = 1   f- f$2 + A, + A** + Aj Cosh(X$> + A4 Sinh(A$)] (45a) 
n * 

<t> = 1 [-* + 1 A, + A40 Cosh(X{) + A30 Sinh(X{)] (45b) 

The constants Aj are determined by specification of the boundary conditions at £ = 1 

and i = -1. 

Simply Supported Boundary Conditions: 

Application of conditions (33) in conjunction with this solution (45) gives the solution 

for the uniformly loaded beam as the simply supported boundary as 

W =l[p(1+f2)/2   +   [Cosh(X$) - Cosh(X))]/X0Cosh(X)] 

<t> = ![-{ + Sinh(A£)ACosh(X)] 
n 

(46a) 

(46b) 

Clamped Boundary Conditions: 

Application of conditions (38) in conjunction with the solution given by (45) gives 

the solution for the uniformly loaded beam with clamped boundary conditions as: 

W =1   [p(1-*2)/2 + [CosMXfl - Cosh(X)]//Sinh(X)] 

0 = L[-$ + Sinh(A£)/Sinh(X)] 
n 

(47a) 

(47b) 

Two observations can be made: 1) the solutions obtained for the uniformly loaded 

beam, equations (46) and (47) are identical with the solution that would be obtained 

by integrating the respective Green's functions; 2) the general solutions obtained here 

(30) and (45) can be used to obtain solutions for other combinations of boundary 

conditions as allowed by equations (26). 
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DISCUSSION OF RESULTS 

The purpose of this section is the presentation of results which describe the behavior 

of pressure stabilized beams under load as predicted by the theory developed in the 

prerr-sding sections. The results to be presented will describe the deformation behavior 

and the strength behavior for beams subjected to a centrally located concentrated load. 

This problem is considered here because it represents a characteristic solution of the 

governing equations and is thus very useful as a tool to illustrate the behavior with respect 

to the three parameters, pressure, geometry and material, which occur in the equations. 

These results will be presented for two cases of end restraint, simply supported and fixed 

ends. 

Deformation Behavior 

For linear structures the deformation behavior is conveniently characterized by the 

Green's function G(£, TJ) which can be thought of as the deformation at a coordinate 

( due to a unit load at coordinate TJ or the flexibility function often used in structural 

mechanics. The flexibility parameter used here is the deformation at the beam midpoint 

due to a unit load applied at the same point. This flexibility parameter is presented 

in nondimensional form as a function of the nondimensional pressure, geometry and 

material parameters. 

Pressure Parameter: 

The nondimensional flexibility parameter as a function of the pressure parameter 

is shown in Figures 2 and 3 for the simply supported and fixed end restraints, respectively. 

For the data shown the geometry parameter p - 100 and the modulus ratio is c = 0.1. 

The physical pressure range covered in these plots depends on the geometry and elastic 

modulus of the particular beam, but for a beam having a radius of 3.175 cm (1.25 in) 

and an elastic modulus of 2.1015 x 108 dyne/cm (1200 lb/in) the pressure range is 

0 - 4.236 x 106 dyne/cm2 (24.2 lb/in2). Examination of the plots in Figures 2 and 

3 reveals that for very low pressures the flexibility is large and rather large decreases 

in flexibility result from small increases in pressure. In the higher pressure range the 

opposite effect is observed, that is, large increases in pressure are required to significantly 

decrease the flexibility.   Thus, in the higher pressure range the benefits to be gained with 
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respect to decreasing flexibility or increasing itiffness by changes in pressures are not 

significant Although it is not exactly the case the flexibility can generally be described 

as varying inversely with the pressure. The same type of behavior is observed for other 

geometries and modulus ratios. Compariso". of the results for the two types of end 

restraints reveals that, as would be expected, the simply supported case is more flexible 

than the fixed case. 

Geometry Parameters: 

Figures 4 and 5 show respectively the variation of the flexibility parameter with 

geometry for the simply supported and fixed-end restraints. As indicated above, the 

geometry is specified by the ratio of the beam length to the cross-section radius. The 

results presented are for a modulus ratio c * 0.1 and for three values of the pressure 

parameter. These results reveal a linear relationship between flexibility and geometry 

except in the low range of the geometry parameter. 

Modulus Ratio: 

The third parameter appearing in the governing -equations is the ratio of the shear 

modulus to the elastic modulus, referred to hereafter as the modulus ratio. The flexibility 

parameter as a function of the modulus ratio is presented in Figures 6 and 7 for the 

fixed-end beam and in Figures 8 and 9 for the simply supported beam. For each case 

results are given for two values of the geometry parameter and three values of the pressure 

parameter. Examination of the results for the fixed-end case (Figures 6 and 7) reveals 

that for short beams with large cross sections (Figure 6) the variation of the modulus 

ratio in the lower range of that parameter can have a significant effect on the flexibility 

parameter. This effect is more pronounced at low pressures. In the higher range of 

the modulus ratio for short large-cross-section beams and over the entire range of modulus 

ratio for long thin beams, the flexibility parameter is nearly constant. Thus, it is apparent 

that shear deformation is an important consideration for short beams with large cross 

sections utilizing low-inflation pressures. Similar results are observed for the simply 

supported case (Figures 8 and 9) although the importance of shear deformation is not 

as significant as in the fixed-end case. 
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Failure Criteria 

The main thrust of this work is the development of derign equations for use on 

structural elements fabricated of materials such as fabric which cannot support compressive 

stress. For this situation a useful and convenient failure criterion for describing the strength 

of the structural element is the wrinkling load. Several authors, see for example references 

6 and 7, have carried out nonlinear analysis of special loading situations which relate 

this wrinkling load to the ultimate strength of the member. Thus, this wrinkling load 

can be used to develop other failure criteria. This wrinkling load is defined as the load 

which results in a negative stress at some point in the structure equal in magnitude to 

the positive stress at that point caused by pressure. This results in a stress of zero magnitude 

at the point in question with any further increase in the load causing a compressive stress 

which cannot be supported by the material so that wrinkling results. The wrinkling load 

thus specifies the initiation of failure and can be thought of as analogous to the yield 

strength. 

As was done with the discussion of the deformation behavior, the principal results 

presented here will be for the case of a concentrated load applied at the center of the 

beam for which the maximum stress and thus the wrinkling occurs at the center of the 

beam. T.esults relative to the behavior of the wrinkling load as a function of the pressure, 

geometry and material properties will be presented for both the simply supported and 

fixed-boundary restraints. It is possible to express in a rather concise and useful form 

the behavior of the wrinkling load for the uniformly loaded beam as a function of the 

geometry and pressure level and this result will be presented. 

Pressure Parameter: 

The wrinkling load as a function of pressure level is depicted in Figure 10 for the 

geometry parameter p = 100 and the modulus ration c * 0.1. The data shown is for 

the case of clamped restraints as indicated, but the data for the case of simply supported 

restraints is nearly indistinguishable from the results presented in Figure 10. Examination 

of these results shows that the wrinkling load, and thus the load supporting capacity of 

pressure stabilized beams, increase with pressure. The rate of increase is greater than 

a linear relationship; that is, doubling the pressure results in more than a doubling of 

the wrinkling load. 
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Geometry Parameter: 

Figure 11 shows the behavior of the wrinkling load as a function of the geometry 

parameter for both the clamped and simply supported end restraints. Data is shown for 

three values of the pressure parameter n, and all data is for one value of the modulus 

ratio, c = 0.1. For values of the geometry parameter above 50 for the fixed case and 

30 for the simply supported case, the wrinkling load takes on a nearly constant value. 

Below these values the geometry parameter causes considerable variation in the wrinkling 

load. The overall variation shown in Figure 11 is that of the negative hyperbolic tangent. 

These results show that above some value of the geometry parameter the load carrying 

capacity of the beam is independent of length. Subsequently, similar behavior will be 

;'iown for the uniformly loaded beam. 

Modulus Ratio: 

The variation of the Wrinkling load with the modulus ratio is shown in Figure 12 

for the case of simply supported end restraints, and Figure 13 for fixed-end restraints. 

Results are shown for the pressure parameter, n = 0.015 and for two values of the 

geometry parameter, p = 20, 100. These results show that for values of c above 0.2 

the modulus ratio has very iittle effect on the wrinkling load for the values of p and 

n presented. These results are typical for all values of p and n. This confirms the finding 

revealed by examination of the deformation behavior with regard to the significance of 

shear deformation. 

Behavior Under Uniform Load 

Since the uniformly loaded beam more closely represents the type of loading situation 

that would occur in tentage application, some results concerning the magnitude of the 

wrinkling load for this case are presented. The wrinkling load here is the magnitude 

of the load per unit length of beam which causes wrinkling to begin. The results presented 

here are for the load per unit physical length as opposed to the load per unit 

nondimensional length used in the derivation. 

For simply supported end restraints the wrinkling load is given as 

1 

'w- 
-• 

CoshX 
- Cosh X + 1 

(48) 
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and for the fixed-end restraints 

SinhX f    =«2 
'w 

-SinhX + \ 
(49) 

The parameter X increases with both n, the pressure parameter and p the geometry 

parameter and the expressions in brackets in '*.j<v;.ons (48) and (49) rapidly approach 

unity as n and p increase. Thus, over much of the pressure and geometry range, the 

wrinkling load for both types of end rertraint can be approximated by 

fw - £f_ (50) 
2C*,, 

when a is the radius of the tube cross section. From this expression it is ssen that the 

load-carrying capacity increases quadratically with the pressure and linearly with the cross 

section radius. Thus, if the pressure is doubled the cross section radius may decrease 

by a f--;tor of four and the same load-carrying capacity is maintained. This is one of 

the principal advantages of the pressurized rib concept; that is, the use of highe- pressure 

levels allows a significant decrease in the cross section size. 

For the case of the concentrated load, it was shown that above some values of the 

geometry parameter the wrinkling load was independent of the geometry. Examination 

of equation (50) reveals that the wrinkling load is independent of the beam length as 

long as the approximation used in setting the terms in equations (48) and (49) to unity 

are valid. 

CONCLUDING REMARKS 

The development of a linear theory for the behavior of pressure stabilized beams 

under static load has been presented and solutions to the resulting governing equations 

obtained. Results, principally tor the case of concentrated loading, are presented which 

illustrate the behavior of pressure stabilized beams under load and the manner in which 

that behavior is influenced by pressure level, beam geometry and material properties. 

With regard to deformation behavior, the results show that the flexibility of pressure 

stabilized beams has a variation with pressure that is very nearly an inverse relationship 
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and a linear variation with the length to radius ratio except for small values of that ratio. 

The material properties enter in two ways, first through the pressure parameter which 

is the ratio of the axial stress due to pressure to the elastic modulus, and sec. nd through 

the modulus ratio, the ratio of the shear modulus to the elastic modulus. Thus, the 

elastic modulus has a direct bearing on the behavior by the manner in which >t determines 

the pressure parameter. The results show that the influence of the shear modulus on 

the deformation behavior is significant only when modulus ratio is less than 0.2 and then 

only for low pressure levels and length to radius ratio. 

The results show that the wrinkling load which is used to characterize the load-carrying 

capacity of pressure stabilized beams increases with pressure at a rate more rapidly than 

a linear »elationship. The relationship between the wrinkling load and the length to radius 

ratio usec to ascribe the geometry is that of a negative hyperbolic tangent. As a 

consequence, the wrinkling load is independent of the geometry for values of the length 

to radius ratio greater than 50. As with the flexibility, it is found that the shear modulus 

has very little influence on the wrinkling load. For the case of a uniformly loaded beam 

it is found that the wrinkling load varies quadratically with the pressure and linearly 

with the beam cross-section radius. 
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